Physics 4A: Constitutive Law P11 ================================ .. code:: ipython3 from constitutive_laws_generator import LinearElasticConstitutiveLaw, NeoHookeanConstitutiveLaw import torch import matplotlib.pyplot as plt import numpy as np import random from sympy import * from kan import * from kan.compiler import kanpiler random.seed(0) np.random.seed(0) torch.manual_seed(0) torch.use_deterministic_algorithms(True) torch.set_default_dtype(torch.float64) N = 1000 sigma = 0.2 F = torch.eye(3,3)[None,:,:].expand(N,3,3) + (torch.rand(N,3,3)*2-1)*sigma det = torch.det(F) F *= (det > 0)[:,None,None] linear = LinearElasticConstitutiveLaw(young_modulus=1.0, poisson_ratio=0.2) P_l = linear(F) P11_l = P_l[:,[0],[0]] P12_l = P_l[:,[0],[1]] neo = NeoHookeanConstitutiveLaw(young_modulus=1.0, poisson_ratio=0.2) P_n = neo(F) P11_n = P_n[:,[0],[0]] P12_n = P_n[:,[0],[1]] # P11 # linear: P11 = 2 * mu * (F11 - 1) + lambda * (F11 + F22 + F33 - 3) # neohookean: P11 = mu * (F11^2 + F21^2 + F31^2 - 1) + lambda * log(|F|) # P12 # linear: P12 = mu * (F12 + F21) # neohookean: P12 = mu * (F12 * F11 + F22 * F21 + F32 * F31) .. code:: ipython3 mu, lambda_ = linear.get_lame_parameters() input_vars = F11, F12, F13, F21, F22, F23, F31, F32, F33 = symbols('F11 F12 F13 F21 F22 F23 F31 F32 F33') P11_l_expr = 2 * mu * (F11 - 1) + lambda_ * (F11 + F22 + F33 - 3) model = kanpiler(input_vars, P11_l_expr) F_flatten = F.reshape(N, -1) model.get_act(F_flatten) model.plot(in_vars=input_vars, out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. parsed-literal:: saving model version 0.1 .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_2_1.png .. code:: ipython3 model.perturb() model.get_act(F_flatten) model.plot(in_vars=input_vars, out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. parsed-literal:: saving model version 0.2 .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_3_1.png .. code:: ipython3 from kan.utils import create_dataset_from_data dataset = create_dataset_from_data(F_flatten, P11_n) model.fit(dataset, steps=20); .. parsed-literal:: | train_loss: 6.38e-03 | test_loss: 6.99e-03 | reg: 1.36e+00 | : 100%|█| 20/20 [00:06<00:00, 3.00it .. parsed-literal:: saving model version 0.3 .. parsed-literal:: .. code:: ipython3 model.plot(in_vars=input_vars, out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_5_0.png .. code:: ipython3 detF = F11 * F22 * F33 + F12 * F23 * F31 + F13 * F21 * F32 - F11 * F23 * F32 - F12 * F21 * F33 - F13 * F22 * F31 D = symbols('|F|') dataset = augment_input(input_vars, [detF], dataset) .. code:: ipython3 model.expand_width(0,1,perturb=True) .. parsed-literal:: saving model version 0.4 .. code:: ipython3 model.get_act(dataset) model.plot(in_vars=[D] + list(input_vars), out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_8_0.png .. code:: ipython3 model.fit(dataset, opt='LBFGS', steps=20); .. parsed-literal:: | train_loss: 2.91e-04 | test_loss: 3.21e-04 | reg: 2.95e+00 | : 100%|█| 20/20 [00:17<00:00, 1.15it .. parsed-literal:: saving model version 0.5 .. parsed-literal:: .. code:: ipython3 model.get_act(dataset) model.plot(in_vars=[D] + list(input_vars), out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_10_0.png .. code:: ipython3 model = model.prune() model.get_act(dataset) model.plot() .. parsed-literal:: saving model version 0.6 .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_11_1.png .. code:: ipython3 model.auto_symbolic() .. parsed-literal:: fixing (0,0,0) with log, r2=0.9999966767727161, c=2 fixing (0,1,0) with x^2, r2=0.9999980195191509, c=2 fixing (0,2,0) with x^2, r2=0.9998412733282299, c=2 fixing (0,3,0) with x^2, r2=0.9996084382228987, c=2 fixing (0,4,0) with 0 fixing (0,5,0) with 0 fixing (0,6,0) with 0 fixing (0,7,0) with 0 fixing (0,8,0) with 0 fixing (0,9,0) with 0 saving model version 0.7 .. code:: ipython3 model.fit(dataset, opt='LBFGS', steps=100); .. parsed-literal:: | train_loss: 3.31e-11 | test_loss: 2.89e-11 | reg: 0.00e+00 | : 100%|█| 100/100 [00:18<00:00, 5.44 .. parsed-literal:: saving model version 0.8 .. parsed-literal:: .. code:: ipython3 model.plot(in_vars=[D] + list(input_vars),out_vars=[r'$P_{11}$'], varscale=0.75, scale=1.0, out_vars_offset=0.08) .. image:: Physics_4A_constitutive_laws_P11_files/Physics_4A_constitutive_laws_P11_14_0.png .. code:: ipython3 from kan.utils import ex_round ex_round(ex_round(model.symbolic_formula(var= [D] + list(input_vars))[0][0],5),2) .. math:: \displaystyle 0.42 F_{11}^{2} + 0.42 F_{12}^{2} + 0.42 F_{13}^{2} + 0.28 \log{\left(2.5 |F| \right)} - 0.67 .. code:: ipython3 0.28*np.log(2.5) - 0.67 .. parsed-literal:: -0.41343859507523656