Physics 2A: Conservation Laws ============================= .. code:: ipython3 from kan import * from kan.utils import batch_jacobian, create_dataset_from_data import numpy as np model = KAN(width=[2,1], seed=42) # the model learns the Hamiltonian H = 1/2 * (x**2 + p**2) x = torch.rand(1000,2) * 2 - 1 flow = torch.cat([x[:,[1]], -x[:,[0]]], dim=1) def pred_fn(model, x): grad = batch_jacobian(model, x, create_graph=True) grad_normalized = grad/torch.linalg.norm(grad, dim=1, keepdim=True) return grad_normalized loss_fn = lambda grad_normalized, flow: torch.mean(torch.sum(flow * grad_normalized, dim=1)**2) dataset = create_dataset_from_data(x, flow) model.fit(dataset, steps=20, pred_fn=pred_fn, loss_fn=loss_fn); .. parsed-literal:: checkpoint directory created: ./model saving model version 0.0 .. parsed-literal:: | train_loss: 1.07e-04 | test_loss: 1.17e-04 | reg: 4.12e+00 | : 100%|█| 20/20 [00:01<00:00, 16.52it .. parsed-literal:: saving model version 0.1 .. parsed-literal:: .. code:: ipython3 model.plot() .. image:: Physics_2A_conservation_law_files/Physics_2A_conservation_law_2_0.png .. code:: ipython3 model.auto_symbolic() .. parsed-literal:: fixing (0,0,0) with x^2, r2=1.0000003576278687, c=2 fixing (0,1,0) with x^2, r2=1.0000004768371582, c=2 saving model version 0.2 .. code:: ipython3 from kan.utils import ex_round ex_round(model.symbolic_formula()[0][0], 3) .. math:: \displaystyle - 1.191 x_{1}^{2} - 1.191 x_{2}^{2} + 2.329