Physics 1: Lagrangian neural network ==================================== .. code:: ipython3 from kan import * from kan.utils import batch_jacobian, batch_hessian torch.use_deterministic_algorithms(True) torch.set_default_dtype(torch.float64) seed = 0 torch.manual_seed(seed) #example = 'harmonic_oscillator' #example = 'single_pendulum' example = 'relativistic_mass' # three examples: harmonic oscillator, single pendulum, double pendulum # dimension of q # Lagrangian: (q, qd) -> (qdd) if example == 'harmonic_oscillator': n_sample = 1000 # harmonic oscillator d = 1 q = torch.rand(size=(n_sample,1)) * 4 - 2 qd = torch.rand(size=(n_sample,1)) * 4 - 2 qdd = - q x = torch.cat([q, qd], dim=1) if example == 'single_pendulum': n_sample = 1000 # harmonic oscillator d = 1 q = torch.rand(size=(n_sample,1)) * 4 - 2 qd = torch.rand(size=(n_sample,1)) * 4 - 2 qdd = - torch.sin(q) x = torch.cat([q, qd], dim=1) if example == 'relativistic_mass': n_sample = 10000 # harmonic oscillator d = 1 q = torch.rand(size=(n_sample,1)) * 4 - 2 #qd = torch.rand(size=(n_sample,1)) * 1.998 - 0.999 #qd = 0.95 + torch.rand(size=(n_sample,1)) * 0.05 qd = torch.rand(size=(n_sample,1)) * 2 - 1 qdd = (1 - qd**2)**(3/2) x = torch.cat([q, qd], dim=1) .. code:: ipython3 from kan.compiler import kanpiler from sympy import * input_variables = symbol_x, symbol_vx = symbols('x v_x') expr = symbol_vx ** 2 model = kanpiler(input_variables, expr, grid=20) .. parsed-literal:: saving model version 0.1 .. code:: ipython3 model.get_act(x) model.plot() .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_3_0.png .. code:: ipython3 model.perturb(mode='best', mag=0.1) model.get_act(x) model.plot() .. parsed-literal:: saving model version 0.2 .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_4_1.png .. code:: ipython3 from kan import * from kan.utils import batch_jacobian, create_dataset_from_data import numpy as np torch.use_deterministic_algorithms(True) def closure(): global loss optimizer.zero_grad() jacobian = batch_jacobian(model, x, create_graph=True) hessian = batch_hessian(model, x, create_graph=True) Lqdqd = hessian[:,d:,d:] Lq = jacobian[:,:d] Lqqd = hessian[:,d:,:d] Lqqd_qd_prod = torch.einsum('ijk,ik->ij', Lqqd, qd) qdd_pred = torch.einsum('ijk,ik->ij', torch.linalg.inv(Lqdqd), Lq - Lqqd_qd_prod) loss = torch.mean((qdd - qdd_pred)**2) loss.backward() return loss steps = 20 log = 1 optimizer = LBFGS(model.parameters(), lr=1, history_size=10, line_search_fn="strong_wolfe", tolerance_grad=1e-32, tolerance_change=1e-32, tolerance_ys=1e-32) #optimizer = torch.optim.Adam(params, lr=1e-2) pbar = tqdm(range(steps), desc='description', ncols=100) for _ in pbar: # update grid if _ < 5 and _ % 20 == 0: model.update_grid(x) optimizer.step(closure) if _ % log == 0: pbar.set_description("| loss: %.2e |" % loss.cpu().detach().numpy()) .. parsed-literal:: | loss: 5.03e-05 |: 100%|███████████████████████████████████████████| 20/20 [02:59<00:00, 8.99s/it] .. code:: ipython3 model.plot() .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_6_0.png .. code:: ipython3 model.auto_symbolic() :: --------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) /var/folders/6j/b6y80djd4nb5hl73rv3sv8y80000gn/T/ipykernel_24271/2849209031.py in ----> 1 model.auto_symbolic() ~/Desktop/2022/research/code/pykan/kan/MultKAN.py in auto_symbolic(self, a_range, b_range, lib, verbose) 1402 print(f'fixing ({l},{i},{j}) with 0') 1403 else: -> 1404 name, fun, r2, c = self.suggest_symbolic(l, i, j, a_range=a_range, b_range=b_range, lib=lib, verbose=False) 1405 self.fix_symbolic(l, i, j, name, verbose=verbose > 1, log_history=False) 1406 if verbose >= 1: ~/Desktop/2022/research/code/pykan/kan/MultKAN.py in suggest_symbolic(self, l, i, j, a_range, b_range, lib, topk, verbose, r2_loss_fun, c_loss_fun, weight_simple) 1332 # getting r2 and complexities 1333 for (name, content) in symbolic_lib.items(): -> 1334 r2 = self.fix_symbolic(l, i, j, name, a_range=a_range, b_range=b_range, verbose=False, log_history=False) 1335 if r2 == -1e8: # zero function 1336 r2s.append(-1e8) ~/Desktop/2022/research/code/pykan/kan/MultKAN.py in fix_symbolic(self, l, i, j, fun_name, fit_params_bool, a_range, b_range, verbose, random, log_history) 488 y = self.spline_postacts[l][:, j, i] 489 #y = self.postacts[l][:, j, i] --> 490 r2 = self.symbolic_fun[l].fix_symbolic(i, j, fun_name, x, y, a_range=a_range, b_range=b_range, verbose=verbose) 491 if mask[i,j] == 0: 492 r2 = - 1e8 ~/Desktop/2022/research/code/pykan/kan/Symbolic_KANLayer.py in fix_symbolic(self, i, j, fun_name, x, y, random, a_range, b_range, verbose) 229 else: 230 #initialize from x & y and fun --> 231 params, r2 = fit_params(x,y,fun, a_range=a_range, b_range=b_range, verbose=verbose, device=self.device) 232 self.funs[j][i] = fun 233 self.funs_avoid_singularity[j][i] = fun_avoid_singularity ~/Desktop/2022/research/code/pykan/kan/utils.py in fit_params(x, y, fun, a_range, b_range, grid_number, iteration, verbose, device) 235 b_ = torch.linspace(b_range[0], b_range[1], steps=grid_number, device=device) 236 a_grid, b_grid = torch.meshgrid(a_, b_, indexing='ij') --> 237 post_fun = fun(a_grid[None,:,:] * x[:,None,None] + b_grid[None,:,:]) 238 x_mean = torch.mean(post_fun, dim=[0], keepdim=True) 239 y_mean = torch.mean(y, dim=[0], keepdim=True) KeyboardInterrupt: .. code:: ipython3 model.unfix_symbolic(0,0,0) model.suggest_symbolic(0,0,0) .. parsed-literal:: saving model version 0.5 function fitting r2 r2 loss complexity complexity loss total loss 0 x 1.000000 -16.565706 1 1 -2.513141 1 cos 1.000000 -16.599499 2 2 -1.719900 2 sin 1.000000 -16.599499 2 2 -1.719900 3 exp 0.999997 -16.268112 2 2 -1.653622 4 x^0.5 0.999977 -14.896568 2 2 -1.379314 .. parsed-literal:: ('x', ((x)>, (x)>, 1, (x, y_th)>), 0.9999996907837526, 1) .. code:: ipython3 model.unfix_symbolic(0,1,0) model.suggest_symbolic(0,1,0) .. parsed-literal:: saving model version 0.4 function fitting r2 r2 loss complexity complexity loss total loss 0 0 0.000000 0.000014 0 0 0.000003 1 cos 0.969503 -5.034727 2 2 0.593055 2 x^2 0.969092 -5.015413 2 2 0.596917 3 sin 0.965249 -4.846400 2 2 0.630720 4 x 0.000392 -0.000551 1 1 0.799890 .. parsed-literal:: ('0', ((x)>, (x)>, 0, (x, y_th)>), 0.0, 0) .. code:: ipython3 x, y = model.get_fun(0,1,0) .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_10_0.png .. code:: ipython3 from kan.utils import create_dataset_from_data dataset2 = create_dataset_from_data(x[:,None], y[:,None]) model2 = KAN(width=[1,1,1]) model2.fix_symbolic(0,0,0,'x^2',fit_params_bool=False) .. parsed-literal:: checkpoint directory created: ./model saving model version 0.0 saving model version 0.1 .. code:: ipython3 model2.get_act(dataset2) model2.plot() .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_12_0.png .. code:: ipython3 model2.fit(dataset2, steps=50); .. parsed-literal:: | train_loss: 3.77e-04 | test_loss: 3.76e-04 | reg: 3.35e+00 | : 100%|█| 50/50 [00:46<00:00, 1.07it .. parsed-literal:: saving model version 0.2 .. parsed-literal:: .. code:: ipython3 model2.fit(dataset2, steps=50, update_grid=False); .. parsed-literal:: | train_loss: 3.73e-04 | test_loss: 3.72e-04 | reg: 3.35e+00 | : 100%|█| 50/50 [00:13<00:00, 3.81it .. parsed-literal:: saving model version 0.3 .. parsed-literal:: .. code:: ipython3 model2.plot() .. image:: Physics_1_Lagrangian_files/Physics_1_Lagrangian_15_0.png .. code:: ipython3 model2.suggest_symbolic(1,0,0) .. parsed-literal:: function fitting r2 r2 loss complexity complexity loss total loss 0 x^0.5 0.999957 -14.193489 2 2 -1.238698 1 sqrt 0.999957 -14.193489 2 2 -1.238698 2 log 0.999722 -11.763921 2 2 -0.752784 3 1/x^0.5 0.999485 -10.894391 2 2 -0.578878 4 1/sqrt(x) 0.999485 -10.894391 2 2 -0.578878 .. parsed-literal:: ('x^0.5', ((x)>, (x)>, 2, (x, y_th)>), 0.9999566254728288, 2) .. code:: ipython3 from kan.utils import fit_params fit_params(x**2, y, lambda x: x**(1/2)) .. parsed-literal:: Best value at boundary. r2 is 0.9989821969546337 .. parsed-literal:: (tensor([-9.8000, 9.8868, -0.3482, 1.2049]), tensor(0.9990)) .. code:: ipython3 model2.auto_symbolic() .. parsed-literal:: skipping (0,0,0) since already symbolic fixing (1,0,0) with x^0.5, r2=0.9999494098870415, c=2 saving model version 0.4 .. code:: ipython3 from kan.utils import ex_round ex_round(model2.symbolic_formula()[0][0], 2) .. math:: \displaystyle 1.19 - 1.08 \sqrt{1 - 1.0 x_{1}^{2}}