Example 14: Knot supervised =========================== .. code:: ipython3 import pandas as pd import numpy as np import torch from kan import * import copy device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) seed = 42 torch.manual_seed(seed) np.random.seed(seed) # Download data: https://colab.research.google.com/github/deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb#scrollTo=l10N2ZbHu6Ob df = pd.read_csv("./knot_data.csv") df.keys() X = df[df.keys()[1:-1]].to_numpy() Y = df[['signature']].to_numpy() # normalize X X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) X = (X - X_mean[np.newaxis,:])/X_std[np.newaxis,:] input_normalier = [X_mean, X_std] # normalize Y max_signature = np.max(Y) min_signature = np.min(Y) Y = ((Y-min_signature)/2).astype(int) n_class = int((max_signature-min_signature)/2+1) output_normalier = [min_signature, 2] dataset = {} num = X.shape[0] n_feature = X.shape[1] train_ratio = 0.8 train_id_ = np.random.choice(num, int(num*train_ratio), replace=False) test_id_ = np.array(list(set(range(num))-set(train_id_))) dtype = torch.get_default_dtype() dataset['train_input'] = torch.from_numpy(X[train_id_]).type(dtype).to(device) dataset['train_label'] = torch.from_numpy(Y[train_id_][:,0]).type(torch.long).to(device) dataset['test_input'] = torch.from_numpy(X[test_id_]).type(dtype).to(device) dataset['test_label'] = torch.from_numpy(Y[test_id_][:,0]).type(torch.long).to(device) :: --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) /var/folders/6j/b6y80djd4nb5hl73rv3sv8y80000gn/T/ipykernel_75986/3212158569.py in 11 12 # Download data: https://colab.research.google.com/github/deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb#scrollTo=l10N2ZbHu6Ob ---> 13 df = pd.read_csv("./knot_data.csv") 14 df.keys() 15 ~/opt/anaconda3/lib/python3.9/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs) 309 stacklevel=stacklevel, 310 ) --> 311 return func(*args, **kwargs) 312 313 return wrapper ~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options) 676 kwds.update(kwds_defaults) 677 --> 678 return _read(filepath_or_buffer, kwds) 679 680 ~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py in _read(filepath_or_buffer, kwds) 573 574 # Create the parser. --> 575 parser = TextFileReader(filepath_or_buffer, **kwds) 576 577 if chunksize or iterator: ~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py in __init__(self, f, engine, **kwds) 930 931 self.handles: IOHandles | None = None --> 932 self._engine = self._make_engine(f, self.engine) 933 934 def close(self): ~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py in _make_engine(self, f, engine) 1214 # "Union[str, PathLike[str], ReadCsvBuffer[bytes], ReadCsvBuffer[str]]" 1215 # , "str", "bool", "Any", "Any", "Any", "Any", "Any" -> 1216 self.handles = get_handle( # type: ignore[call-overload] 1217 f, 1218 mode, ~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/common.py in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 784 if ioargs.encoding and "b" not in ioargs.mode: 785 # Encoding --> 786 handle = open( 787 handle, 788 ioargs.mode, FileNotFoundError: [Errno 2] No such file or directory: './knot_data.csv' .. code:: ipython3 def train_acc(): return torch.mean((torch.argmax(model(dataset['train_input']), dim=1) == dataset['train_label']).float()) def test_acc(): return torch.mean((torch.argmax(model(dataset['test_input']), dim=1) == dataset['test_label']).float()) model = KAN(width=[n_feature,1,n_class], grid=5, k=3, seed=seed, device=device) model.fit(dataset, lamb=0.005, batch=1024, loss_fn = nn.CrossEntropyLoss(), metrics=[train_acc, test_acc], display_metrics=['train_loss', 'reg', 'train_acc', 'test_acc']); .. code:: ipython3 model.plot(scale=1.0, beta=0.2) n = 17 for i in range(n): plt.gcf().get_axes()[0].text(1/(2*n)+i/n-0.005,-0.02,df.keys()[1:-1][i], rotation=270, rotation_mode="anchor") .. code:: ipython3 scores = model.feature_score features = list(df.keys()[1:-1]) y_pos = range(len(features)) plt.bar(y_pos, scores) plt.xticks(y_pos, features, rotation=90); plt.ylabel('feature importance')