API 9: Videos ============= We have shown one can visualize KAN with the plot() method. If one wants to save the training dynamics of KAN plots, one only needs to pass argument save_video = True to train() method (and set some video related parameters) .. code:: ipython3 from kan import * import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) # create a KAN: 2D inputs, 1D output, and 5 hidden neurons. cubic spline (k=3), 5 grid intervals (grid=5). model = KAN(width=[4,2,1,1], grid=3, k=3, seed=1, device=device) f = lambda x: torch.exp((torch.sin(torch.pi*(x[:,[0]]**2+x[:,[1]]**2))+torch.sin(torch.pi*(x[:,[2]]**2+x[:,[3]]**2)))/2) dataset = create_dataset(f, n_var=4, train_num=3000, device=device) image_folder = 'video_img' # train the model #model.train(dataset, opt="LBFGS", steps=20, lamb=1e-3, lamb_entropy=2.); model.fit(dataset, opt="LBFGS", steps=5, lamb=0.001, lamb_entropy=2., save_fig=True, beta=10, in_vars=[r'$x_1$', r'$x_2$', r'$x_3$', r'$x_4$'], out_vars=[r'${\rm exp}({\rm sin}(x_1^2+x_2^2)+{\rm sin}(x_3^2+x_4^2))$'], img_folder=image_folder); .. parsed-literal:: cuda checkpoint directory created: ./model saving model version 0.0 .. parsed-literal:: | train_loss: 2.89e-01 | test_loss: 2.96e-01 | reg: 1.31e+01 | : 100%|█| 5/5 [00:09<00:00, 1.94s/it .. parsed-literal:: saving model version 0.1 .. parsed-literal:: .. code:: ipython3 import os import numpy as np import moviepy.video.io.ImageSequenceClip # moviepy == 1.0.3 video_name='video' fps=5 fps = fps files = os.listdir(image_folder) train_index = [] for file in files: if file[0].isdigit() and file.endswith('.jpg'): train_index.append(int(file[:-4])) train_index = np.sort(train_index) image_files = [image_folder+'/'+str(train_index[index])+'.jpg' for index in train_index] clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps=fps) clip.write_videofile(video_name+'.mp4') .. parsed-literal:: Moviepy - Building video video.mp4. Moviepy - Writing video video.mp4 .. parsed-literal:: .. parsed-literal:: Moviepy - Done ! Moviepy - video ready video.mp4