API 1: Indexing =============== .. code:: ipython3 from kan import * device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) model = KAN(width=[2,3,2,1], noise_scale=0.3, device=device) x = torch.normal(0,1,size=(100,2)).to(device) model(x); beta = 100 model.plot(beta=beta) # [2,3,2,1] means 2 input nodes # 3 neurons in the first hidden layer, # 2 neurons in the second hidden layer, # 1 output node .. parsed-literal:: cuda checkpoint directory created: ./model saving model version 0.0 .. image:: API_1_indexing_files/API_1_indexing_1_1.png Indexing of edges (activation functions) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Each activation function is indexed by :math:`(l,i,j)` where :math:`l` is the layer index, :math:`i` is the input neuron index, :math:`j` is the output neuron index. All of them starts from 0. For example, the one in the bottom left corner is (0, 0, 0). Let’s try to make it symbolic and see it turns red. .. code:: ipython3 model.fix_symbolic(0,0,0,'sin') model.plot(beta=beta) model.unfix_symbolic(0,0,0) .. parsed-literal:: r2 is 0.9785453677177429 saving model version 0.1 saving model version 0.2 .. image:: API_1_indexing_files/API_1_indexing_4_1.png .. code:: ipython3 model.fix_symbolic(0,0,1,'sin') model.plot(beta=beta) model.unfix_symbolic(0,0,1) .. parsed-literal:: r2 is 0.991183876991272 saving model version 0.3 saving model version 0.4 .. image:: API_1_indexing_files/API_1_indexing_5_1.png .. code:: ipython3 model.fix_symbolic(0,1,0,'sin') model.plot(beta=beta) model.unfix_symbolic(0,1,0) .. parsed-literal:: r2 is 0.9494338631629944 saving model version 0.5 saving model version 0.6 .. image:: API_1_indexing_files/API_1_indexing_6_1.png .. code:: ipython3 model.fix_symbolic(1,0,0,'sin') model.plot(beta=beta) model.unfix_symbolic(1,0,0) .. parsed-literal:: r2 is 0.9999909996986389 saving model version 0.7 saving model version 0.8 .. image:: API_1_indexing_files/API_1_indexing_7_1.png .. code:: ipython3 model.fix_symbolic(2,1,0,'sin') model.plot(beta=beta) model.unfix_symbolic(2,1,0) .. parsed-literal:: r2 is 0.9998168349266052 saving model version 0.9 saving model version 0.10 .. image:: API_1_indexing_files/API_1_indexing_8_1.png Indexing of nodes (neurons) ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Each neuron (node) is indexed by :math:`(l,i)` where :math:`l` is the layer index along depth, :math:`i` is the neuron index along width. In the function remove_node, we use use :math:`(l,i)` to indicate which node we want to remove. .. code:: ipython3 model.remove_node(1,0) .. parsed-literal:: saving model version 0.11 saving model version 0.12 saving model version 0.13 .. code:: ipython3 model.plot(beta=beta) .. image:: API_1_indexing_files/API_1_indexing_12_0.png .. code:: ipython3 model.remove_node(2,1) .. parsed-literal:: saving model version 0.14 saving model version 0.15 saving model version 0.16 .. code:: ipython3 model.plot(beta=beta) .. image:: API_1_indexing_files/API_1_indexing_14_0.png .. code:: ipython3 model.remove_node(1,2) .. parsed-literal:: saving model version 0.17 saving model version 0.18 saving model version 0.19 .. code:: ipython3 model.plot(beta=beta) .. image:: API_1_indexing_files/API_1_indexing_16_0.png Indexing of layers ~~~~~~~~~~~~~~~~~~ .. code:: ipython3 # KAN spline layers are refererred to as act_fun # KAN symbolic layers are referred to as symbolic_fun model = KAN(width=[2,3,5,1]) i = 0 model.act_fun[i] # => KAN Layer (Spline) model.symbolic_fun[i] # => KAN Layer (Symbolic) for i in range(3): print(model.act_fun[i].in_dim, model.act_fun[i].out_dim) print(model.symbolic_fun[i].in_dim, model.symbolic_fun[i].out_dim) .. parsed-literal:: checkpoint directory created: ./model saving model version 0.0 2 3 2 3 3 5 3 5 5 1 5 1 .. code:: ipython3 # check model parameters model.act_fun[i].grid model.act_fun[i].coef model.symbolic_fun[i].funs_name model.symbolic_fun[i].mask .. parsed-literal:: Parameter containing: tensor([[0., 0., 0., 0., 0.]])