API 11: Create dataset ====================== how to use create_dataset in kan.utils Standard way .. code:: ipython3 from kan.utils import create_dataset import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) f = lambda x: x[:,[0]] * x[:,[1]] dataset = create_dataset(f, n_var=2, device=device) dataset['train_label'].shape .. parsed-literal:: cuda .. parsed-literal:: torch.Size([1000, 1]) Lazier way. We sometimes forget to add the bracket, i.e., write x[:,[0]] as x[:,0], and this used to lead to an error in training (loss not going down). Now the create_dataset can automatically detect this simplification and produce the correct behavior. .. code:: ipython3 f = lambda x: x[:,0] * x[:,1] dataset = create_dataset(f, n_var=2, device=device) dataset['train_label'].shape .. parsed-literal:: torch.Size([1000, 1]) Laziest way. If you even want to get rid of the colon symbol, i.e., you want to write x[;,0] as x[0], you can do that but need to pass in f_mode = ‘row’. .. code:: ipython3 f = lambda x: x[0] * x[1] dataset = create_dataset(f, n_var=2, f_mode='row', device=device) dataset['train_label'].shape .. parsed-literal:: torch.Size([1000, 1]) if you already have x (inputs) and y (outputs), and you only want to partition them into train/test, use create_dataset_from_data .. code:: ipython3 import torch from kan.utils import create_dataset_from_data x = torch.rand(100,2) y = torch.rand(100,1) dataset = create_dataset_from_data(x, y, device=device)