Demo 10: Device =============== All other demos have by default used device = ‘cpu’. In case we want to use cuda, we should pass the device argument to model and dataset. .. code:: ipython3 from kan import KAN, create_dataset import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = 'cpu' print(device) .. parsed-literal:: cpu .. code:: ipython3 model = KAN(width=[4,100,100,100,1], grid=3, k=3, seed=0).to(device) f = lambda x: torch.exp((torch.sin(torch.pi*(x[:,[0]]**2+x[:,[1]]**2))+torch.sin(torch.pi*(x[:,[2]]**2+x[:,[3]]**2)))/2) dataset = create_dataset(f, n_var=4, train_num=1000, device=device) # train the model #model.train(dataset, opt="LBFGS", steps=20, lamb=1e-3, lamb_entropy=2.); model.fit(dataset, opt="Adam", lr=1e-3, steps=50, lamb=1e-3, lamb_entropy=5., update_grid=False); .. parsed-literal:: checkpoint directory created: ./model saving model version 0.0 .. parsed-literal:: | train_loss: 6.83e-01 | test_loss: 7.21e-01 | reg: 1.04e+03 | : 100%|█| 50/50 [00:19<00:00, 2.56it .. parsed-literal:: saving model version 0.1 .. code:: ipython3 device = 'cuda' print(device) .. parsed-literal:: cuda .. code:: ipython3 model = KAN(width=[4,100,100,100,1], grid=3, k=3, seed=0).to(device) f = lambda x: torch.exp((torch.sin(torch.pi*(x[:,[0]]**2+x[:,[1]]**2))+torch.sin(torch.pi*(x[:,[2]]**2+x[:,[3]]**2)))/2) dataset = create_dataset(f, n_var=4, train_num=1000, device=device) # train the model #model.train(dataset, opt="LBFGS", steps=20, lamb=1e-3, lamb_entropy=2.); model.fit(dataset, opt="Adam", lr=1e-3, steps=50, lamb=1e-3, lamb_entropy=5., update_grid=False); .. parsed-literal:: checkpoint directory created: ./model saving model version 0.0 .. parsed-literal:: | train_loss: 6.83e-01 | test_loss: 7.21e-01 | reg: 1.04e+03 | : 100%|█| 50/50 [00:01<00:00, 26.45it .. parsed-literal:: saving model version 0.1