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(2) Physics for Al: developing effective theories to understand the dynamics and generalization of

neural networks, and building physics-inspired machine learning models.
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Theory In general



What is theory?

Dictionary

Definitions from Oxford Languages - Learn more

© theory

.91 Learn to pronounce

noun

a supposition or a system of ideas intended to explain something, especially one based on general

principles independent of the thing to be explained.
"Darwin's theory of evolution®

Similar:  hypothesis thesis conjecture supposition speculation postulation 4

e a set of principles on which the practice of an activity is based.
"a theory of education”

e an idea used to account for a situation or justify a course of action.
'my theory would be that the place has been seriously mismanaged”



Why theory?

10000000 bits 100 bits 10000000 bits

Past Observations »

Information compression Information gain

Easy to store and communicate Predicting future worlds is essential to survival
(human brains are limited)

Theory » Predicting new observations




Side: Why is theory possible? Eaad

Our
| | Mathematical
* Unreasonable effective of mathematics Universe
* Anthropic principle My Quest

for the Ultimate

Number of time dimensions

Nature of Reality
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Number of spatial dimensions

Anthropic principle XA 40 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

"Anthropic bias" redirects here. For the book by Nick Bostrom, see Anthropic Bias (book).

The anthropic principle, also known as the "observation selection effect",!!! is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of
possible observations that we could make about the universe is limited by the fact that observations could only happen in a universe capable of developing
intelligent life in the first place.!?! Proponents of the anthropic principle argue that it explains why this universe has the age and the fundamental physical
constants necessary to accommodate conscious life, since if either had been different, we would not have been around to make observations. Anthropic
reasoning is often used to deal with the notion that the universe seems to be finely tuned for the existence of life.!

| don’t want to sound philosophical here, but my take is that:
We should not take the existence of (good) theories for granted!



What is a good theory?

16 ctober 1964, votume 146, xumber 3602 5> L JER INNC I

Strong Inference

Certain systematic methods of scientific thinking
may produce much more rapid progress than others.

John R. Platt

“nature” or the experimental outcome
chooses—to go to the right branch or
the left; at the next fork, to go left
or right; and so on. There are similar
branch points in a “conditional com-
puter program,” where the next move
depends on the result of the last cal-
culation. And there is a “conditional
inductive tree” or “logical tree” of this
kind written out in detail in many
first-year chemistry books, in the table
of steps for qualitative analysis of an
unknown sample, where the student
is led through a real problem of con-
secutive inference: Add reagent A; if

new particles explicitly enough so that
if they are not found the theories will
fall. As the biologist W. A. H. Rush-
ton has said (/7), “A theory which
cannot be mortally endangered cannot

be alive.” Murray Gell-Mann and

Yuval Ne’eman recently used the parti-
cle grouping which they call “The
Eightfold Way” to predict a missing
particle, the Omega-Minus, which was
then looked for and found (/2). But
one alternative branch of the theory
would predict a particle with one-third
the usual electronic charge, and it was
not found in the experiments, so this
branch must be rejected.

A new theory predicts an event E to be very likely p,.., = 1,
but old theories think that E is very unlikely p ;4 < 1.

E happens!

>

Information gain (surprisal): log(pnew/ Pold)

Also information compression (8 mesons unified by 1 group)




What is a good theory?

10000000 bits 100 bits 10000000 bits

> >

Large information compression Large information gain

Past Experiments Theory Predicting new experiments




Are classical ML theories good?

10000000 bits 100 bits 10000000 bits

=)
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Large information compression Large information gain

X

Past Experiments Theory Predicting new experiments




Why is ML theory hard?

It’s hard to get a theory for any type of complex system!
, ML systems are of course complex systems!




Classical ML theories

Statistics (PAC), Physics (stat mech)



Probably Approximately Correct (PAC) Learning

Foundations of
Machine Learning .ccondeition

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

Probably approximately correct learning

Article Talk

From Wikipedia, the free encyclopedia

In computational learning theory, probably approximately correct (PAC) learning is a framework for
mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant.!']

In this framework, the learner receives samples and must select a generalization function (called the

hypothesis) from a certain class of possible functions. The goal is that, with high probability (the "probably"

part), the selected function will have low generalization error (the "approximately correct" part). The learner

must be able to learn the concept given any arbitrary approximation ratio, probability of success, or
distribution of the samples.



Statistical Mechanics

Correspond to ensemble
average in stat mech

A

In order to implement the machinery of statistical mechanics for the analysis
of learning problems one hence has to determine typical values of interesting
quantities such as the generalization error. It 1s, however, in general rather difficult

Stati Sti cal Me Ch ani CS to calculate the most probable values since this requires one more or less to

‘ calculate the complete probability distribution. Fortunately, for some quantities the
Of Learnin g most probable value coincides with the average value, which 1s much more easily——
A. Engel and C. Van den Broeck accessible analytically. If additionally the variance of the probability distribution

tends to zero in the thermodynamic limit such a quantity is called self-averaging
since the probability for a value different from its average tends to zero in the
thermodynamic limit. It is very important to always remember, however, that not
all interesting quantities are automatically self-averaging.” We will therefore find
that the identification of the self-averaging quantities is the first and rather crucial
step 1n the statistical mechanics analysis of a learning problem.

To summarize, the mathematical analysis of learning from examples requires
a proper treatment of the various probabilistic elements essential for such a
problem. Statistical mechanics mainly considers the special scenario of a teacher
and student neural network and aims at producing exact results for the rypical
learning behaviour. This becomes possible by considering the thermodynamic
limit, in which both the number of adjustable couplings of the student network
and the number of examples in the training set diverge. After identifying the
CAMBRIDGE self-averaging quantities of the problem the typical performance is characterized
by calculating their averages over the relevant probability distributions.

more information - www.cambridge.org/0521773075




Example: axis-aligned rectangle

Figure 2.1 Target concept R and possible hypothesis R’. Circles represent training
instances. A blue circle is a point labeled with 1, since it falls within the rectangle
R. Others are red and labeled with 0.




Example (PAC)

Care about worst case

R(Rs) <

error
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Example (Stat Mech)

Care about global/typical/average behaviour

/ Assume: uniform distribution

R~ 1/m

number
of
sample

error



PAC vs statistical physic: different

We will elucidate some aspects of the PAC approach in chapter 10. Here we
just note that it allows one to derive very general bounds for the performance of
learning scenari0s by studying worst case situations. These worst cases generally
include the worst possible choice of the student vector for a given value of the
training error, the worst choice of the target rule and the worst realization of the
training set. It 1s hence quite possible that the results obtained are over-pessimistic
and may not characterize the average or most probable behaviour.

The theoretical description of learning from examples outlined in the present
book 1s based on concepts different from PAC learning. Contrary to mathematical
statistics, statistical mechanics tries to describe the fypical behaviour exactly rather
than to bound the worst case. In statistical mechanics fypical means not just most
probable but in addition 1t 1s required that the probability for situations different
from the typical one can be made arbitrarily small. This remarkable property 1s
achieved by what 1s called the thermodynamic limit. In this limit the number N
of degrees of freedom tends to infinity, and the success of statistical mechanics
rests on the fact that the probability distributions of the relevant quantities become
sharply peaked around their maximal values 1n this limit.
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PAC vs statistical physic: same

To summarize, the mathematical analysis of learning from examples requires
a proper treatment of the various probabilistic elements essential for such a
problem. Statistical mechanics mainly considers the special scenario of a teacher
and student neural network and aims at producing exact results for the typical
learning behaviour. This becomes possible by considering the thermodynamic
limit, in which both the number of adjustable couplings of the student network
and the number of examples in the training set diverge. After identifying the
self-averaging quantities of the problem the typical performance 1s characterized
by calculating their averages over the relevant probability distributions.

Both PAC and Stat mech assume to know:
(1) hypothesis set.

(2) ground truth hypothesis.

(3) how to select a hypothesis.



Limitation of PAC/Stat Mech Learning

Both PAC and Stat mech learning assume to know:
(1) hypothesis set. In deep learning, depending on neural architectures. /@
(2) ground truth hypothesis. However, in deep learning, data/algorithm structures are unclear. €

(3) how to select a hypothesis. However, in deep learning, inductive biases are unclear. €3



Prof. Yang Yuan’s view

https://zhuanlan.zhihu.com/p/634193692
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Prof. Yang Yuan’s view

Engineering-like theory
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Theory-like engineering
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To understand a concept or an algorithm, ML theorists have made

goals that are hard to reach. Due to limits of available tools, they Theory-like engineering does not have a pre-set goal. It won’t add
had to add all sorts of assumptions to reach the goals in the sky. in unrealistic assumptions just to reach certain goal. Rather, it cares more
As a result, many conclusions make no sense, and are not embraced about reality of the objects at study, documenting everything with a normal

by ML researchers outside theory. heart. Most of pure math research are along this way.



Physics-like ML theory



A physics-like theory, fHig TV IEIE

Note:

When | say “physics-like”,

| don’t necessarily mean technical tools in physics research or physical phenomenon,
but rather a mindset that physicists adopt to approach our physical reality.

Physicists’ mindset:
(0) put an emphasis on reality (build theories driven by experiments/observations)
1) identify useful/relevant degrees of freedom (while ignoring other details)

(1)
(2) view the world dynamically
(3) appreciate mental pictures more than mathematical rigour



Questions for physics-like ML theory

Q1: What is reality in ML?

Q2: How do we approach the reality?



Q1: What is reality in ML?

*Double descent
* Grokking

' *Neural Scaling Laws
/ *Emergent abilities
Architectures /;/:4/" * Edge of Stability
Optimisation @ - - * Optimizer inductive biases
Regularisation -—’ *Neural collapse

Task & Data * Information bottleneck

* Effective energy descent

* Modularity

* Loss spike

* Condensation

* Linear separability
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Q2: How do we approach reality?

Physicists:

(0) put an emphasis on reality (build theories driven by experiments/observations)
(1) identify useful/relevant degrees of freedom (while ignoring other details)

(2) view the world dynamically

(3) appreciate mental pictures more than mathematical rigour



Example: Grokking

Modular Division (training on 50% of data)

100 —— train Wrmm'————

— al

80 %

o))
-

Accuracy
=
-

20

101 102 10° 104 10° 10°
Optimization Steps

“Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets” by Power et al.
https://mathai-iclr.github.io/papers/papers/MATHAI 29 paper.pdf



https://mathai-iclr.github.io/papers/papers/MATHAI_29_paper.pdf

Example: Grokking

From Figure 1 of "Grokking: Generalization beyond
overfitting on small algorithmic datasets." by Power et al.



Example: Grokking

Split the table into
train & val datasets




Example: Grokking

Logits for a, b, c, ...
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Task: learn a binary operation // Decoder-only

‘ ‘ ‘ Transformer
a+b modp=c N or MLP
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Strategy 1: identify relevant variables

Accuracy

1L Transformer on Modular Addition (p=113)
Unconstrained Optimization, Standard Initialization

1.09 —— -
train - 60
—— test 1
0.8 1 —— weight norm EE
-50 £
0.6 - S
/ =
S - 45 =
2
0.4 - v
- 40 =
0.2 - - 35
- 30
0.0
101 102 10° 104

Optimization Steps

“Omnigrok: Grokking Beyond Algorithmic Data” Liu et al.



Strategy 2: view the world dynamically

distance d

B

velocity v

. . . . d
The time to travel from city Atocity Bis t=— «x v~

Vv

1

Model B: generalisation circuit, Model A: memorization circulit,
small weight norm large weight norm

distance Aw
B

welght decay y welght norm

Alogw
Y

X y_l

The time to travel from model A to model B 1s 1 =



Strategy 2: view the world dynamically

1L Transformer on Mod Addition |a=1.0

Optimization Steps to
100% Test Accuracy

Weight Decay y



Strategy 3: Forming mental pictures

generalizalle large init

solutions
fast
Y Y
, (9\O® \(\Q\

' \
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oldilocks zone (generalization)

. Wec
weight space weight norm w



A physics-like theory, fHig TV IEIE

Note:

When | say “physics-like”,

| don’t necessarily mean technical tools in physics research or physical phenomenon,
but they are also useful!

Technical tools and/or physical concepts

(1) Phase transition. NN behaviour depending on control parameters.

(2) Renormalization: how to do coarse graining. NN macroscopic behaviour
emergent from microscopic variables.

(3) NN training as dynamical systems. Fast-slow dynamics, adiabatic approximation.

(4) NN as a bulk of matter/complex systems: response function, hysteresis etc.

()

(6)

5) Modularity. Decompose a large system into a few weakly-coupled systems.
6) Mean field theory and quasi-particles.



Summary: Core questions for Al theory researchers

Q1: What is reality in Al?
Q2: How do we approach the reality?
(Q3: And build something useful?)




