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Q: Can physics help build generative models?



Our Universe/Physics is a generative model

Lin, Tegmark & Rolnick



Thank you for your listening!



Thank you for your listening!
Just kidding! 
Need actually build generative models!



Overview

1. Brief background: Diffusion Models (DM)

2. Poisson flow generative models (PFGM/PFGM++)

3. GenPhys: From Physical Processes to Generative Models

Diffusion process

Electrostatics

Any physical process?



Generative Models
DALLE-2 Stable diffusion



Score-based models (diffusion models)

Courtesy of Yang Song

https://yang-song.net/blog/2021/score/

·x = ∇xlog p(x) + 2 ·W

p(x) = exp(−E(x)) sθ(x) = − ∇E(x)Physics interpretation



Score-based models (diffusion models)

Courtesy of Yang Song

https://yang-song.net/blog/2021/score/



Poisson Flow Generative Models
Yilun Xu , Ziming Liu , Max Tegmark & Tommi Jaakkola 

Accepted by NeurIPS 2022
* *



Basic idea

Generative modeling Physics

data point/sample electric charge

data distribution charge distribution

flow electric field/flux

bijective map electric lines



Electrostatics
∇2φ = − ρ(x), ∇2 ≡

N

∑
i=1

∂2
iPoisson Equation

∇2G(x, x′ ) = − δ(x − x′ ) ⟹ G(x, x′ ) ∼ r−(N−2), r ≡ | |x − x′ | |Green function

φ(x) = ∫ G(x, x′ )ρ(x′ )dx′ E(x) = − ∇φ(x) ∼ ∫
x − x′ 

| |x − x′ | |N ρ(x′ )dx′ 

N = 3 ⟹ φ(r) ∼
1
r

, E(r) ∼
1
r2

Electric field

Poisson fieldN ≥ 3 ⟹ φ(r) ∼
1

rN−2
, E(r) ∼

1
rN−1

generalize



Poisson Flow: a New Flow Inspired by Electrostatics

• Interpret -dim data distribution as charge density
• Placing the charges on the  hyperplane in an -dim space augmented with 

dimension 
• Electric Field Lines define a bijection between data distribution and a uniform 

distribution on the large hemisphere

𝑁
𝒛 = 𝟎 𝑁 + 1

𝒛



Generation
1. Uniformly sampling an initial sample (  ) on the hemisphere.



Generation
1. Uniformly sampling an initial sample (  ) on the hemisphere.
2. Evolving the sample by following the corresponding electric field line.
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Generation
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2. Evolving the sample by following the corresponding electric field line.



Generation
1. Uniformly sampling an initial sample (  ) on the hemisphere.
2. Evolving the sample by following the corresponding electric field line.
3. Stopping the process when .𝑧 = 0



Why bijection?



Why augmentation?



Demo (Heart)



Demo (PFGM word)



Demo (IAIFI word)



Experiments: Visualization of Backward ODE



Experiments: Generation Quality and Speed (CIFAR-10)

Model Invertible? Inception Score 
(higher is better)

FID Score 
(lower is better)

NFE 
(lower is better)

StyleGAN2-ADA ✘ 9.83 2.92 1
Diffusion (VP) - SDE ✘ 9.68 2.41 1000

Glow ✔ 3.92 48.9 1

Diffusion (VP) - ODE ✔ 9.47 2.86 134
PFGM (ours)* ✔ 9.68 2.35 110

Quality Speed

*: PFGM and Diffusion models use the same architecture, DDPM++ deep

Current SOTA results in normalizing flow family!



Q: Relation between Diffusion Models and
Poisson Flows?



Poisson Flow Generative Models ++

Xu, Liu, Tong, Tian, Tegmark, and Jaakkola. PFGM++: Unlocking the Potential of Physics-Inspired Generative Models, arXiv: 2302.04265



Augmented dimensionality D



PFGM++ framework

accuracy



Anchor the ODE by  due to symmetry 𝑟 = | 𝒛 |



Balance Robustness and Rigidity by Controlling 𝐷

• Larger  !  Better Accuracy/ Worse Robustness

• Smaller  ! Worse Accuracy/ Better Robustness

𝐷

𝐷

𝜎 = 𝑟/ 𝐷

Sweet spot  in the middle!𝐷∗



Experiments: Image Generation

(with improved DDPM++/NCSN++ backbone in EDM)



Experiments: Image Generation

https://paperswithcode.com/sota/image-generation-on-cifar-10



Experiments: Robustness

𝑫 =

𝜶 = 𝟎 . 𝟐

𝟔𝟒 𝟏𝟐𝟖 𝟐𝟎𝟒𝟖 ∞

α : noise scale



Experiments: Robustness in post-training quantization



Q: Going beyond diffusion equation and 
Poisson equation?



GenPhys: From Physical Processes 
to Generative Models

Ziming Liu, Di Luo, Yilun Xu, Tommi Jaakkola, Max Tegmark. “GenPhys: From Physical Processes to Generative Models” 
arXiv: 2304.02637



From physics to generative models
Diffusion models

Diffusion 
(Diffusion equation)

Electrostatics 
(Poisson equation) Poisson Flow Generative Models



From physics to generative models?

Universal 
Converter?

Diffusion

Physics Generative Models

Electrostatics (Poisson)

Wave

Weak Interaction (Yukawa)

Diffusion Models

Poisson Flow Generative Models

Wave Generative Models ??? 

Yukawa Generative Models ??? 

x x − GenPhys



Q: Is there a universal converter from physics 
to generative models?
A: Yes, but…

Yes: A concrete protocol that converts physics to generative models 
but: the converted generative models may not have desirable properties 



Converter: partial differential equations (PDEs)
A physical process is described by a PDE 

A generative model is associated with a density flow (which is also a PDE) 

Physicists already know how to solve it, … …, if they are equivalent, …

…, then we know how to solve this one, too. By “solve”, we mean a design of (p, v, R). 

velocity field birth/death rateprobability distribution



Converter
physical process

generative model
Simply set  f(x, t) = pdata(x)δ(t)???



Example: Diffusion equation
Source PDE Target PDE

= 0ϕt − ∇2ϕ = 0

“score”



Example: Poisson equation
Source PDE Target PDE

= 0ϕtt + ∇2ϕ = 0

“Poisson field”



Example: Wave equation
Source PDE Target PDE

= 0ϕtt − ∇2ϕ = 0

BUT WAIT!



Caveat: prior distribution
Generative models should have data-independent priors: 
No matter what the initial distribution (data) is, the final distribution should be independent of it.

Diffusion Poisson Wave 

Time

Toy: 
Two point distribution



Which PDEs can give desirable generative models?

(C1)  can be converted to a density flow;x
A PDE  is s-generative (s for smooth) if:x

(C2) The solutions of  become “smoother” over time. x

(C1) Case-dependent constructions are required, but are usually straightforward.
(C2) turns out to be equivalent to a constraint on dispersion relations of PDEs.


Intuition: Non-zero frequency modes should decay faster than zero modes.



Examples



Dispersion relations

Smoothing

(C2) The solutions of  become “smoother” over time. x

ϕ ∼ ei(kx−ωt)



Other s-generative PDEs



Open Questions

• Among s-generative PDEs, which one gives the best performance (in theory 
and in practice)?


• Going beyond smooth and linear PDEs. E.g., Naiver-Stokes equation, 
reaction-diffusion equation

Navier-Stokes equation
Reaction-diffusion equation



Thank you for your listening!


