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—How do representations, modularity, quantisation emerge from limited resources?



2

Evolution: Intelligence from hunger/danger
Predator Climate Physical limitations 

Use Spears etc.
Build houses etc. Build cars etc.
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Empty-stomach intelligence: hunger keeps brains sharper

Dietrich et al, 2012. "AgRP neurons regulate development of dopamine neuronal plasticity 

and non-food associated behaviour”



Goldilocks zone for lives

(Goldilocks zone)
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Representations



Representation learning

Too many resourcesToo few resources Just right
Resources



Representation learning

Too few resources

Cannot learn anything

No representation 
Learning

Resources
Too many resourcesJust right



Representation learning

Too many resourcesToo few resources

Memorize everythingCannot learn anything

No representation 
Learning

No representation 
Learning

Resources
Just right
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Representation learning

Too many resourcesToo few resources Just right

Memorize everythingCannot learn anything

No representation 
Learning

Search for clever ways for computation

No representation 
Learning

Representation 
Learning

Resources
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From Figure 1 of "Grokking: Generalization beyond 
overfitting on small algorithmic datasets." by Power et al.

Setup: Algorithmic datasets

a ∘ b = c
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Split the table into 
train & val datasets

From Figure 1 of "Grokking: Generalization beyond 
overfitting on small algorithmic datasets." by Power et al.

Setup: Algorithmic datasets
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a + b mod p = c
Task: learn a binary operation

Setup: Algorithmic datasets

}Decoder-only 
Transformer 
or MLP

a b

Logits for a, b, c, …

 ←Trainable Embeddings

12 + 23 mod 59 = 35
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Grokking

Power et al , “Grokking: Generalization Beyond 
Overfitting on Small Algorithmic Datasets”
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Grokking

Power et al , “Grokking: Generalization Beyond 
Overfitting on Small Algorithmic Datasets”

Representation is key for generalisation!

Liu et al , “Towards understanding grokking: An 
effective theory of representation learning”
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Grokking

Power et al , “Grokking: Generalization Beyond 
Overfitting on Small Algorithmic Datasets”

Representation is key for generalisation!

Liu et al , “Towards understanding grokking: An 
effective theory of representation learning”

Chughtai, Chan & Nanda , “A Toy Model of 
Universality: Reverse Engineering How Networks 

Learn Group Operations”

For general groups, learned representations 
are group representations.
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Q: Under which conditions can 
representations emerge, 

hence generalisation happens?
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Larger weight decay => faster generalisation

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”
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Larger weight decay => faster generalisation

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”

WHY?
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What we know in elementary school …

AB
distance d
velocity v

The time to travel from city A to city B is t =
d
v

∝ v−1
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In the grokking case

AB
distance Δw

weight decay γ

The time to travel from model A to model B is t =
Δlogw

γ
∝ γ−1

Model B: generalisation circuit,

small weight norm

Model A: memorization circuit,

large weight norm

weight norm
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Weight norm & LU mechanism

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”

Model B: generalisation,

small weight norm

Model A: memorization,

large weight norm
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Eliminate grokking by constraining weight norm

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”

Weight norm increases (overfitting), 

then decreases (generalisation) Constraining weight norm eliminates grokking
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Weight norm and representation learning

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”

Q: Why does weight norm increase at first (despite weight decay)?

A: Again, we need to bring representation back into the whole picture!
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Weight norm and representation learning

Liu, Michaud & Tegmark “Omnigrok: Grokking 
Beyond Algorithmic Data”

t =
L + htanθ

γ

data size ↑ → θ ↓ → t ↓

γ ↑ → t ↓
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Modularity
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Neural Network Modularity/Circuitry

Olah et al., “Zoom in: An 
Introduction to Circuits”

Wang et al., “Interpretability in the wild: A circuit for 
indirect object identification in GPT-2 small”

Vision Language
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Neural networks vs brains

???

Neural networks Brains
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But, there’s a key difference between 
brains and neural networks … 
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Modular brains have survival advantages, but modular NNs don’t 
When humans deal with a specific task …

Modular brains Non-Modular brains

Relevant neurons are local
Shorter neuron connections

React faster
More likely to survive

Relevant neurons are non-local
Longer neuron connections

React slower
Less likely to survive
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Q: Do modular neural networks have “survival advantages”?

A: No! Because there is no (explicit) incentive for artificial neural 
networks to become modular if it only cares about prediction.

Q: What training techniques can induce modularity in otherwise non-
modular networks?

A: Need to introduce “locality” and limit resources (hunger)! 

Liu, Gan & Tegmark “Seeing is Believing: Brain-Inspired 
Modular Training for Mechanistic Interpretability”


https://arxiv.org/abs/2305.08746

https://arxiv.org/abs/2305.08746
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Brain-inspired modular training (BIMT)

Liu, Gan & Tegmark “Seeing is Believing: Brain-Inspired 
Modular Training for Mechanistic Interpretability”


https://arxiv.org/abs/2305.08746

https://arxiv.org/abs/2305.08746
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Modular addition blue/red stands for positive/negative weights
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Representations emerge on privileged bases

Representations emerge  
on privileged bases 


No need to 

search for directions or 

do PCA!
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Voting mechanism
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Permutation S4
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Permutation S4 
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Visualising neurons with Cayley graphs 
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Symbolic formulas 

(a) independence (b) feature sharing (c) compositionality

I = (x1 − x2)2 + (x3 − x4)2
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MNIST
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Transformer + in-context linear regression

Task from Akyurek et al, “Which learning algorithm is in-
context learning? Investigations with linear models”
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Plot twist: LLM
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Neural Scaling Laws (NSL)
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LLM seem to contradict intelligence from hunger?

My understanding: Current LLM are still underfitting (too hungry). 

Michaud, Liu, Girit & Tegmark. 
“The Quantization Model of Neural Scaling”.



Quantization Hypothesis

1

2
3

4
5 6

Size = Frequency (Importance)

Knowledge quanta sequence

Michaud, Liu, Girit & Tegmark. 
“The Quantization Model of Neural Scaling”.



Quantization Hypothesis

1

2
3

4
5 6

Knowledge quanta sequence

Small model

Middle model

Large model

Michaud, Liu, Girit & Tegmark. 
“The Quantization Model of Neural Scaling”.



Quantization Hypothesis Michaud, Liu, Girit & Tegmark. 
“The Quantization Model of Neural Scaling”.



Theory



Parameter scaling



Data scaling (multi-epoch) 



Data scaling (single-epoch) 



Toy example: Multitask sparse parity



Toy example: dynamics
arXiv: 2303.13506

A Quantization Model of Neural ScalingIndividual task loss = grokking

Total loss = scaling law



Toy example: scaling



Language Model



Quanta Discovery with Gradients (QDG)

……

Quanta 1

Quanta 2

Quanta k

Quanta k+1

……

If two tokens belong to the same quanta, 

their activations/gradients should align.

QDG main idea:

(1) Compute model gradients for tokens.

(2) Clustering gradients. Each cluster is a quanta. 
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QDG results



Knowledge quanta
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Summary
* Representation

* Modularity

* Quantization 

Thank you!

Ouail KitouniNiklas NolteEric J. MichaudMax Tegmark Mike WilliamsEric Gan

Contact
Email: zmliu@mit.edu, website: kindxiaoming.github.io

How does intelligence emerge under hunger?

A scientific theory of deep learning?

http://kindxiaoming.github.io


59

Backup
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Interpretability vs accuracy tradeof



Reduced 1D landscape

Any quantity of interest, e.g., train/test loss/error.

Initialisation

minima on the sphere

w

w*(w)



Toy: Teacher-student

Teacher network Student network

Random seed: 0


Standard initialisation

Random seed: 1


After standard initialization, multiply all weights by α

Same architecture



Teacher-student: Landscape

Student network

Initialisation

minima on the sphere

α = 1

w*(w)
teacher network

weight space



Teacher-student: Grokking

Student network

Note: weight norm is not constrained here.



Teacher-student: Grokking

Student network

Note: weight norm is not constrained here.



MNIST: landscape analysis

Model: MLP



MNIST: Grokking



More datasets
IMDb (Sentiment Analysis) + LSTM

QM9 (Molecule) + Graph Convolutional Neural Network


