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Grokking Phenomenology [1] Grokking Mechanism
All theories boil down to this mental picture:
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The mental picture is:
F1: There are generlization (gen) and memorization (mem) solutions.
F2: Gen and mem solutions are separated in parameter space, along some direction.
F3: There is a force that drives the model from mem to gen. 

All theories share the same mental picture above, but vary in details:
Q1: Why do generalization solutions exist at all?
      All theories agree that represetation is key [1][2][3][4][5].
Q2: What is the direction that separates gen and mem solutions?
      - Neuron activity [3]                   - weight norm of model parameters [6]                       
      - Sparsity [7]                               - time scales of pattern formation [9]
      - Fourier gap [8]                          - last layer norm [10]            

Q3: What is the force that drives the model from mem to gen?
     - weight decay [6]                        - Gradual process by optimization [3][7][8][9]
     - Instability from Adam optimization [10]
Bonus Q: Universality and predictability
     - Grokking can be avoided [2][6].
     - Grokking can be predicted [13].
     - Grokking can happen for non-algorithmic datasets [6].
     - Grokking can occur for (analytically solvable) toy models [11] [12].
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