


Overview

* Al for discovery frameworks
* Closed loops

* Concrete things the have been (re)discovered by Al (including my works)
* Not-yet closed loops, but still useful

 Open questions



“Al + discovery” frameworks



SEARCH and OPTIMIZATION

Goal: Reprogram Cell to gain Stemness

Search 24 genes

=— from FANTOM DB

24 genes enabled reprogramming

Leave-one-out
experiments

OPTIMIZATION

Yamanaka Factors identified

Nobel Prize in Physiology and Medicine 2012

Search and optimization plays a critical role in the process of discovery. Yamanaka's case is interesting because a search was conducted in bioinformatics

What makes a discovery?

ACCIDENT, SEARCH and
OPTIMIZATION

Accidental discovery of thin film formation in
polyacetylene polymerization process

A

Goal: Polyacetylene thin film formation condition

ACCIDENT

Search optimal thin film
formation condition

OPTIMIZATION

Prof. Alan MacDiarmid
Goal: Conducting polymer

Prof. Alan Heeger
SEARCH & .

OPTIMIZATION

Conducting polymer thin film

Nobel Prize in Chemistry 2000

followed by experiment-driven optimization that may be well suited for Al Scientist in the future.

nature > npj_systems biology and applications > perspectives > article

Perspective | Open Access | Published: 18 June 2021

Nobel Turing Challenge: creating the engine for
scientific discovery

Hiroaki Kitano




Why do we need Al for discovery

a Game of GO

Game of GO
recorded in
the past

Game of GO
played and

learnined by
AlphaGo

AlphaGo Zero generated An entire Game of GO

possible moves out of an (Approximately 10170

entire state space state space complexity
and 107360 game tree
complexity)

b Scientific Discovery

Discovered knowledge:
Current scientific ~
knowledge

Knolwedge discoverable
\/(/— with human-centric Al-
P Human hybrid system

Human discoverable knowledge:
Hypothesis space searchable
extending current scientific
knowledge

Knolwedge human may
not be able to discover
- The region for Al-driven

exploration
An entire hypothesis P

space for scientific
knowledge is infinite
or undefinable (a boundary is not clear)

>

Search space structures for a perfect information games as represented by the Game of GO and b scientific discovery are illustrated with commonalities

and differences. While the search space for the Game of GO is well-defined, the search space for scientific discovery is open-ended. A practical initial

strategy is to augment search space based on current scientific knowledge with human-centric Al-Human Hybrid system. An extreme option is to set

search space broadly into distant hypothesis spaces where Al Scientist may discover knowledge that was unlikely to be discovered by the human scientist.



Discovery types

abstract concrete
Deduction (trivial)
- > >
Axioms . Phenomenology Data
Abduction Induction
Discovering axioms: very hard! Discovering phenomenology: e.g.,

Discovering instances: e.qg.,

Equations, conservation laws, symmetries, design drugs

non-conservation, useful dofs,
dimensionless numbers ...



Most Al discoveries In physics so far

Phenomenology Data

Induction

Discovery phenomenology: e.g.,
Equations, conservation laws, symmetries,
non-conservation, useful dofs,
dimensionless numbers ...



nature > nature communications > articles > article

Article | Open Access | Published: 12 April 2023

Combining data and theory for derivable scientific
discovery with Al-Descartes

Al Des-cartes

Cristina Cornelio &, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L.

Clarkson, Nimrod Megiddo, Bachir El Khadir & Lior Horesh

Deduction

Axioms " Phenomenology . Data

Induction

Discovery phenomenology: e.g.,
Equations, conservation laws, symmetries,
non-conservation, useful dofs,
dimensionless numbers ...



Al Des-cartes

* Do we want more data
or background axioms
to support a derivable

hypothesis considering
the alternatives?

« Experimental design
* Logic abduction

Report the best
candidate hypotheses |*

« Comparison with the
known theory

« Computation of the
reasoning errors

nature > nature communications > articles > article

Article | Open Access | Published: 12 April 2023

Combining data and theory for derivable scientific
discovery with Al-Descartes

Cristina Cornelio &, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L.

Clarkson, Nimrod Megiddo, Bachir El Khadir & Lior Horesh

Data collection and
specification of
background knowledge
and thresholds

Generation of a set of
candidate hypotheses
(e.g., with symbolic
regression)

Al-Descartes
Discovery
Cycle

Computation of the
» numerical errors and
uncertainty quantification

The colors match the respective components of the system in Fig. 3.



nature > nature communications > articles > article

| Des-cartes

Article | Open Access | Published: 12 April 2023

Combining data and theory for derivable scientific
discovery with Al-Descartes

Cristina Cornelio &, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L.

Clarkson, Nimrod Megiddo, Bachir El Khadir & Lior Horesh

Background Knowledge
Human curated and/or Al generated

Hypothesis Class

_ Background Theory
Invariants, symmetry, grammar, - Logk axiorms
operators set, dimensionality, constraints
|
Uncertainty
l —] Quantification
v
Symbolic Regression l Reasoning System ‘
D : :
ata Hypothesis engine . Deductive Reasoning i b
. List of Pruned list of Th
m — Propose functional form(s) — —p eorem prover +
hypotheses hypotheses Reasoning/dependency

[ ] Nonlinear regression measures
A Fit constants, assess error

Complexity P
& Accuracy Derivability ‘
Modeler Preferences Re-ranked/pruned list
of hypotheses
Experimental Design Is more data needed to support a 1 :
derivable hypothesis considering the Ngw formu la Arg ther:n%c:vo;::ndldate °
alternatives? discovered! '

1 ‘HO

Colored components correspond to our system, and gray components indicate standard techniques for scientific discovery (human-driven or artificial)

that have not been integrated into the current system. The colors match the respective components of the discovery cycle of Fig. 2. The present system
generates hypotheses from data using symbolic regression, which are posed as conjectures to an automated deductive reasoning system, which proves or
disproves them based on background theory or provides reasoning-based quality measures. 10
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Toward an artificial intelligence physicist for unsupervised learning 0
Phys. Rev. E 100, 033311 — Published 19 September 2019 um
Environments
Divide and conquer TABLE I. Al physicist strategies tested.
Theories Strategy Definition
Pro
theor: Divide and Learn multiple theories each of which specializes
conquer to fit part of the data very well
Occam’s Avoid overfitting by minimizing description
Theory Hub razor length, which can include replacing fitted
constants by simple integers or fractions
Ui et Occam’s Razor Unification Try unifying learned theories by
introducing parameters
: : : Lifelong Remember learned solutions and try
Master theories Symbolic theories learning them on future problems

Al-physicist

FIG. 1. Al physicist architecture. 11
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Toward an artificial intelligence physicist for unsupervised learning 0

Tailin Wu and Max Tegmark

Phys. Rev. E 100, 033311 — Published 19 September 2019 u m

Environments

Divide and conquer

Theori
Pro eories

thec

Theory Hub

Unification Occam’s Razor

Master theories Symbolic theories

Al-physicist

FIG. 1. Al physicist architecture. 12



Concrete things (re)discovered by Al



Concrete things (re)discovered by Al

- (Symbolic) Equations: symbolic regression
- Conservation Laws

- Symmetries

- Useful degrees of freedom

- Dimensionless humbers



Symbolic regression

Data Formula

XYt =y = flx)

Current Issue First release papers Archive About v ( S

ScienceAdvances

HOME > SCIENCE ADVANCES > VOL.6,NO.16 > AIlIFEYNMAN: A PHYSICS-INSPIRED METHOD FOR SYMBOLIC REGRESSION

RESEARCH ARTICLE = COMPUTER SCIENCE f ¥V in @ % X

Al Feynman: A physics-inspired method for symbolic
regression

SILVIU-MARIAN UDRESCU AND MAX TEGMARK Authors Info & Affiliations

Main idea:
Test whether data have desirable/simplifying properties.

If yes, can simplify the original problem to subproblems by leveraging the property.

Divide-and conquier.

Data
x Y s

-0.570631 -0.553583 -1.677797
0.883785 0.817601 2.518988 .
-1.145615 0.546180 -0.053256 .
1.571480 -2.166711 -2.761942 .

Dimensional
analysis

e
No

Polynomial

.

fit

No

Brute
force

@
No

Train neural

¢

¢

0

network
< Try new data with
fewer variables
@E‘j >
E Make two new datasets
with fewer variables
Yes
Solved?
@NO ) )
< Try new data with Equate
fewer variables E variables
Yes
Solved? No -
p Try transformed < Transform
data x&y
>

J

hw

w2c2(e®T — 1)

Gmimo
(w2—21)?+(y2—1y1)?+(22—21)?
l
Dimensional

analysis
2 '77]-‘2
Gf"n’l mq

2 T ) P ] D) zZ2 2]
1 (ea—1)2+(Ft—5 )5t — =)

|

(b—1)2+(c—(;d)‘2+(c—f)2

Translational
symmetry

v

a

(b—1)2+g%+(e—f)?

Translational
symmetry

Y

a
(b—1)24g2+h?

I
Multiplicative
separability
1 a
(b—1)2+g2+h?
| Polynomial
Invert fit

v

(b —1)* + g° + h?

Polynomial
fit

15




Symbolic regression

Al Feynman 2.0: Pareto-optimal symbolic regression
exploiting graph modularity

Silviu-Marian Udrescu', Andrew Tan', Jiahai Feng', Orisvaldo Neto', Tailin Wu? & Max Tegmark':
IMIT Dept. of Physics and Institute for AI & Fundamental Interactions, Cambridge, MA, USA
2Stanford Dept. of Computer Science, Palo Alto, CA, USA
3Theiss Research, La Jolla, CA, USA
1{sudrescu, aktan, fjiahai, oris,tegmark}@mit.edu, 2tailin@cs.stanford.edu

NeurlPS 2020

Figure 2: All functions can be represented as tree graphs whose nodes represent a set of basic
functions (middle panel). Using a neural network trained to fit a mystery function (left panel), our

algorithm seeks a decomposition of this function into others with fewer input variables (right panel),
in this case of the form f(z,y, z) = g[h(z,y), z] .

Simple symmetry (scaling, etc.) Additive separability Compositionality
I ~ I | E—
I I I
or X, +, —
Generalized symmetry Multiplicative separability Generalized additivity

Tl R =

Figure 3: Examples of graph modularity that our algorithm can auto-discover. Lines denote real-
valued variables and ovals denote functions, with larger ones being more complex.

16



Symbolic regression

Dataset Model with Extract to
Graph Neural Network Symbolic Equation
Discovering Symbolic Models from Deep Learning 5
with Inductive Biases ¢
.. .
— ° D N Predict Dynamics | ,y},?
Miles Cranmer! Alvaro Sanchez-Gonzalez? Peter Battaglia? Rui Xu! C-“’) ' _ ) e R O ~
> & A > a-Ia-mn
Kyle Cranmer? David Spergel*:! Shirley Ho*3:1,5 w ‘*Vj ¢ e
o
3‘ R Known spring law
! Prigcetop University, Pripceton, USA 2 .DeepMi'nd, London, UK . S im pl e Pa rt| C I es . . .
3 New York University, New York City, USA 4 Flatiron Institute, New York City, USA E ncoura g e LOW- D| mensiona I |ty

® Carnegie Mellon University, Pittsburgh, USA .
Representation

® O/

PySR:

Symbolic regression Predict Properties

n 1 Cy+ M,
5 = 3 J
P 0= O GG, 2 G+ Calry)

Unknown Dark Matter
overdensity equation

using genetic
programming

Detailed
Dark Matter Simulation

17



Symbolic regression

Published as a conference paper at ICLR 2021

A Pre-orderl traversal B Library

DEEP SYMBOLIC REGRESSION: Sampled '@— 3@— 5‘— 6‘— | @ @ @ @

token:
RECOVERING MATHEMATICAL EXPRESSIONS FROM ‘ [ ‘ ‘ “ ‘ i

TENIET e
|

A

DATA VIA RISK-SEEKING POLICY GRADIENTS

Categorical
Brenden K. Petersen* Mikel Landajuela Larma distribution:

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory
Livermore, CA, USA Livermore, CA, USA 4

bpR@llnl.gov landajuelalal@llnl.gov C Expressiontree

T. Nathan Mundhenk Claudio P. Santiago
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory RNN: > > >
Livermore, CA, USA Livermore, CA, USA
mundhenkl@llnl.gov santiagolO0@llnl.gov ‘ ‘ ‘ ‘ ‘
Soo K. Kim Joanne T. Kim
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory - i - -
Livermore, CA, USA Livermore, CA, USA Parent: O @ ‘ @ @
kim79@11nl.gov kiml02@1llnl.gov

s O 1O 10 10 1@

Deep reinforcement learning

18



SINDY

PNAS
: | 2 2 5 . — — — —
1. True Lorenz System - Y Z . -1 r Yy z x TYxrzyY Z - _gl 52 ‘53_ o X1 1 xi 2 xi 3
1 [ 0] I 0] I 0]
. o o 'x! [-9.9996] [27.9980] [ 0]
r = J(y— LU) 'y [ 9.9998] [-0.9997] [ 0]
, e o 'z [ 0] I 0] [-2.6665]
Yy = x(p—z)—y Data In 'xx' [ 0] [ 0] [ 0]
. 'xy' [ 0] [ 0] [ 1.0000]
. p— 'xz' [ 0] [-0.9999] | 0]
vy [ 0] [ 0] I 0]
| o 'yz [ 0] I 0] I 0]
; : : : 'yvzzzz' | 0] [ 0] 0]
‘zzzzz' | 01 [ 01 [ 0]
i ] Sparse Coefficients of Dynamics
= <
2)
.
e
: oL / 2
X o(X) v
III. Identified System
. T
= O(x")&
E oz & Uy, oy T2 & Z ) z Ty &
< <
3 |
2 X
) g ‘>’ o
3 y .
3 ) o
= ﬁs et o ‘b =
} e
5 T ¥
= 3 :P'
3 <
. :L | :> [
1 T
p .
\
v _“i[ <

II. Sparse Regression to Solve for Active Terms in the Dynamics

ARTICLES Vv FRONT MATTER AUTHORS Vv TOPICS +

RESEARCH ARTICLE APPLIED MATHEMATICS 3

Discovering governing equations from data
by sparse identification of nonlinear
dynamical systems

Steven L. Brunton &, Joshua L. Proctor, and J. Nathan Kutz Authors Info & Affiliations

Edited by William Bialek, Princeton University, Princeton, NJ, and approved March 1, 2016 (received for review August 31, 2015)

March 28,2016 113 (15) 3932-3937 = https://doi.org/10.1073/pnas. 1517384113

Discover (determine) coefficients
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Useful degrees of freedom

PHYSICAL REVIEW E

covering statistical, nonlinear, biological, and soft matter physics

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team D\

Access by MIT Libraries Go Mobile »

video

Silviu-Marian Udrescu and Max Tegmark

Phys. Rev. E 103, 043307 — Published 22 April 2021 um

Symbolic pregression: Discovering physical laws from distorted O
97

Symbolic

Pregression regression

S
|
|
S
N
_|_
S
-
2
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Circular Motion Reaction Diffusion Single Pendulum

Useful degrees of freedom L1082

L )

Air Dancer Lava Lamp

a I‘le > math > arXiv:2112.10755

Input Frames Predicted Frames
(M>N)

Mathematics > Dynamical Systems

[Submitted on 20 Dec 2021]

Discovering State Variables Hidden in Experimental Data 5E vl %P
(A) v J m— | Ly ;g € R | mummiy _/
Boyuan Chen, Kuang Huang, Sunand Raghupathi, Ishaan Chandratreya, Qiang Du, Hod Lipson

NEWS RELEASE 26-JUL-2022 M A M
. . . - Xt €R Xt+dt €R
Columbia Engineering roboticists
discover alternative physics
A new Al program observed physical phenomena and uncovered relevant variables-a
necessary precursor to any physics theory. But the variables it discovered were unexpected Ao /V
< S

Peer-Reviewed Publication (B) ===y [ntrinsic Dimension (ID) = 4
COLUMBIA UNIVERSITY SCHOOL OF ENGINEERING AND APPLIED SCIENCE

(M > N > ID)
o ° o e ° @ Print a Email App
New York, NY—July 25, 2022— Energy,
Mass, Velocity. These three variables make ID
o y . ‘ 5 ‘/t—>t+dt €R
up Einstein’s iconic equation E=MC“. But
how did Einstein know about these hE hD "
concepts in the first place? A precursor step \ (C) Lt—>t+dt c RN - VolV1 I V2| V3 - Lt—>t+dt c RN
to understanding physics is identifying .
relevant variables. Without the concept of N\ {
f 2\
energy, mass, and velocity, not even = =y Neural State Variables
Einstein could discover relativity. But can . ,
such variables be discovered automatically?
Doing so could greatly accelerate scientific
. ID 1, ID
discovery. Vt—>t+dt €R Vt+dt—>t+2dt €R
This is the question that researchers at VIDEO: THE IMAGE SHOWS A CHAOTIC SWING FV
Columbia Engineering posed to a new Al STICK DYNAMICAL SYSTEM IN MOTION. OUR (D) Vol V1|V2| V3 > Vol V1|V | V3
Th desiened WORK AIMS AT IDENTIFYING AND EXTRACTING
program. The program was designed to THE MINIMUM NUMBER OF STATE VARIABLES
observe physical phenomena through a NEEDED TO DESCRIBE SUCH SYSTEM FROM HIGH
video camera, then try to search for the DIMENSIONAL VIDEO FOOTAGE DIRECTLY. view Neural Latent Dynamics

o . more >
minimal set of fundamental variables that

fully describe the observed dynamics. The
study was published on July 25 in Nature
Computational Science. 21



Useful degrees of freedom

PHYSICAL REVIEW LETTERS

Highlights

Deep Learning the Functional Renormalization Group

Domenico Di Sante, Matija Medvidovic, Alessandro Toschi, Giorgio Sangiovanni, Cesare Franchini, Anirvan M.

Recent

Accepted

Sengupta, and Andrew J. Millis
Phys. Rev. Lett. 129, 136402 — Published 21 September 2022

t'pu, U

Collections

Authors

Referees

Search

Press

About

Editorial Team N

Access by MIT Libraries Go Mobile »
v[n

NEWS RELEASE 26-SEP-2022

Artificial intelligence reduces a 100,000-
eguation guantum physics problem to

only four equations

Researchers at the Flatiron Institute and their colleagues trained a machine learning tool to
capture the physics of electrons moving on a lattice using far fewer equations than would
typically be required, all without sacrificing accuracy

Peer-Reviewed Publication
SIMONS FOUNDATION

00000

Using artificial intelligence, physicists have
compressed a daunting quantum problem
that until now required 100,000 equations
into a bite-size task of as few as four

equations — all without sacrificing accuracy.

The work, published in the September 23
issue of Physical Review Letters, could
revolutionize how scientists investigate
systems containing many interacting
electrons. Moreover, if scalable to other
problems, the approach could potentially
aid in the design of materials with sought-
after properties such as superconductivity
or utility for clean energy generation.

“We start with this huge object of all these
coupled-together differential equations;
then we're using machine learning to turn it
into something so small you can count it on

IMAGE: A VISUALIZATION OF A MATHEMATICAL
APPARATUS USED TO CAPTURE THE PHYSICS AND
BEHAVIOR OF ELECTRONS MOVING ON A LATTICE.
EACH PIXEL REPRESENTS A SINGLE INTERACTION
BETWEEN TWO ELECTRONS. UNTIL NOW,
ACCURATELY CAPTURING THE SYSTEM REQUIRED
AROUND 100,000 EQUATIONS — ONE FOR EACH
PIXEL. USING MACHINE LEARNING, SCIENTISTS

22



Useful degrees of freedom

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team N
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Raban Iten, Tony Metger, Henrik Wilming, Lidia del Rio, and Renato Renner
Phys. Rev. Lett. 124, 010508 — Published 8 January 2020

Discovering Physical Concepts with Neural Networks l

.
Ph)’SICS See Viewpoint: Physics Insights from Neural Networks

answe answer O Earth

vlal< e

alty) / ./y 0,
e

observation

% 0
R
o0 SN < Sun /0
RSO RIS
"X&\'@Z‘i&}‘ S>> > > > fM
A 0
r(t,) time r(t,) time r(t,)
encoder E evolution evolution Mars @

(@) (b)
Emergence of heliocentric views

fixed
stars
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Useful degrees of freedom

PHYSICAL REVIEW LETTERS
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Machine Learning Hidden Symmetries
Ziming Liu and Max Tegmark

Phys. Rev. Lett. 128, 180201 — Published 6 May 2022 u m

TABLE I: PDE and Losses for Generalized Symmetries

Generalized symmetry Linear operator L Loss £ | Examples
Translation invariance ﬁj = 0; /1 A EF
Lie invariance flj = K;z-V liNv E,F
Lie equivariance f}j = K;z-V = K; (EQV B
T X t t
Canonical eqvariance ég, ; [Ig ); gi : Ilég Zz i_ g; lcAN C
Hamiltonicity _Z:Jij = —m0, + mz-(‘?z- g | AB,C,D
Modularity lA;ij — Awifaj €M D




0 n Se rvati o n I aws PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team N

Access by MIT Libraries Go Mobile »
A| P0|ncare Machine Learning Conservation Laws from Trajectories 3

Ziming Liu and Max Tegmark

Phys. Rev. Lett. 126, 180604 — Published 6 May 2021 u m
Article References Citing Articles (25) Supplemental Material ﬂ

Trajectory
Data

PCA
Whitening

Y
3urssasoad
-1

h

conserved quantities out of 12 dof’!

Y
o[re)
JIUOIA]

Samples
.. ry —I2 ry — I3
ry = —Gmo T Gm T
r1 — 12| Ty — r3
. Iy — I3 I —In
vy —r3] Ty — 1y / T B
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. 3 11 3 — 12 . :
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Henri Poincaré (1854-1912)

25



Trajectory
Data

You're cheating!
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Al Poincare 20 Machine learning conservation laws from differential equations

Ziming Liu, Varun Madhavan, and Max Tegmark

Phys. Rev. E 106, 045307 — Published 21 October 2022 u m

/ f %servaﬁon Loss
VHl VH3
@v about now?
_ VH,
H4

H, H.,

Henri Poincaré (1854-1912)
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Conservation laws

= I'Xiv > math > arXiv:1811.00961 SINDY-like

Mathematics > Dynamical Systems

[Submitted on 2 Nov 2018]
Discovering conservation laws from data for control
Eurika Kaiser, J. Nathan Kutz, Steven L. Brunton % l

( Noisy observations

. . 1.0 ::’Es\\\\
= I'X]_V > ¢s > arXiv:2003.04630 SRR
p o.o-\ro:: : ‘ \‘J\ ?
—o.s-Q \;q:.‘ ) : /b/l.
Computer Science > Machine Learning NN
[Submitted on 10 Mar 2020 (v1), last revised 30 Jul 2020 (this version, v2)] - (:7 1
Lagrangian Neural Networks
Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, Shirley Ho
/ Baseline NN .
/ Double Pendulum \ e F \ ( EOSS of \
. . nergy
+m2l1l29192 COS(01 — 92) _)
+(m1 + ma)gly cos Oy 8 X
magls cos O < -
o N J 7 q N /
a I'le > cs > arXiv:1906.01563 I > <
/Ozi?;v;hsgzte \ / Conservation of\
A Energy

Computer Science > Neural and Evolutionary Computing

[Submitted on 4 Jun 2019 (v1), last revised 5 Sep 2019 (this version, v3)] N : Y Generalized
Coordinates f v
- - . q q 2 -1 2
Hamiltonian Neural Networks (No need for canonica i=(50) (5 o)
coordinates) \ j
28

Sam Greydanus, Misko Dzamba, Jason Yosinski



Non-conservation

PHYSICAL REVIEW E

covering statistical, nonlinear, biological, and soft matter physics

Highlights Recent Accepted Collections Authors Referees Search Press About

Machine-learning nonconservative dynamics for new-physics

detection

Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, and Tie-Yan Liu
Phys. Rev. E 104, 055302 — Published 9 November 2021

Damped Double Pendulum

Editorial Team N

Access by MIT Libraries Go Mobile »
170
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Imensionless number: conservation In scale

nature communications

Explore content v  About the journal v  Publish with us v

nature > nature communications > articles > article

Article | Open Access | Published: 08 December 2022

Data-driven discovery of dimensionless numbers and
governing laws from scarce measurements

Xiaoyu Xie, Arash Samaei, Jiachen Guo, Wing Kam Liu & & Zhengtao Gan

Nature Communications 13, Article number: 7562 (2022) | Cite this article

5950 Accesses | 2 Citations | 6 Altmetric | Metrics

Data preprocessing

a. Turbulent Rayleigh-Bénard convection:
Heat flux: ¢ Fluid properties:

Cooled: T s Aa,v,x
h Data in
v 19
Heated: T + AT ﬁ
Parametric space to be explored:
Nu = 2L _ £(h, AT, 2 =
u_AAT—f ) 49, Q,V,K —"f(p)
b. Collect experimental data:
{ i, hi, ATy, A4, g1y 0, Vi, K Jiig
c. Construct dimension matrix D:
h AT A g a Vv Kk
Length[L] [ 1 0 1 1 0 2 28
Time [T] O 0 -3 -2 0 -1 -1
Mass [M] 0 0 1 0 0 0 0
Temperature[0] | 0 1 -1 0 -1 0 O
Jd. 4.0-
—— Prediction

3.51 e Exp. data (Training set)
304 °® Exp. data (Test set)

€;t5215"
>1=<2.0-
s
1.0
0.5+
0.0

6 8 10 12

gaATh?

log (*—%—)

14

Dimensionless learning

Two-level optimization:

d. Explore dimensionless space with
embedded dimensional invariance :

Dw =0
= Dy -wp) =0
= 1= exp(w'log(p))

—_—— — e = — = — o — —

Basis Polynomial
coefficients y coefficients

e. Representation learning of scaling law:

Nu = f(IL, B)

P e o

f. Identified dimensionless number
Rayleigh number

aATh3
R =g
VK

|

& 1.0
0.8

|

5 —06_
Ry - : Py .04

Y 0 o e 0 4 to.z

0.0

K Prediction
e Exp. data (Training set)
o Exp. data (Test set)

2 3 4 5 6 7 8 9

a’AT?\ gh?

log(——F——)

L U R S S ———

-------------------- Model out E==ssr===rcccnccsccans’
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Neural New-Physics Detector (NNPhD)

Damped Double Pendulum Neptune Gravitational Radiation

[ LT

S LIGO (2017)

Machine-Learning Non-Conservation for New-Physics Detection
Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark and Tie-Yan Liu
Joint work by MIT/IAIFI and Microsoft
Physical Review E 104,055302
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NNPNhD: Neural New Physics Detector

f=J.+ ],
/ \

Conservative, Non-Conservative,
LNN MLP

Loss Function

L=1L, +AL,
L=1lf-.+ 1)

Lagrangian Neural Network

A AL

X=>OOH0O(1) ¢ (g
q / ﬂ\“A”A conservative

agrangian

(UAN)

2 (g, q,t)

‘ Universal Approximator Network

non-conservative
(“new physics”)

e )

- - - Integrator

whole dynamics

»| Symbolic

Explainer

Trajectory Prediction
(Section Il B)

Detecting and Explaining
New Physics
(Section Il A)
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Phase Transition of ﬂ Phase transitions:

Indication of new physics (hon-conservation) !

o 10°:
~J
S
O 10-1 HO+MF(c)
-
Q HO+CG(c)
c HO+LD(n)
= 10 HO+CD(n)
% —e=HO+PF(n)
o 1073
-
al
1074
102 10! 10° 10 102



Phase Transition of A

\ 4

Q
q -

C 0.020

@

-

Q 0.015 -

C Le — ()
9 0.010 -
e
—
8 0.005 - —e— Double pendulum
DL_ v Neptune

0.000 - f o  —8— Gravitational radiation
10—2 10—1 100 101 102

A
Theory: Check out the Theorem 1 of our paper!



Machine-Learning
Hidden Symmetries

O Trainable
. é% [’ O Fixed

" Tensor field Neural |
Network R

with hidden
symmetry

“Machine-learning hidden symmetries”, Ziming Liu and Max Tegmark.

Phys. Rev. Lett. 128, 180201
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What happens inside black holes?

-2 0 0 0 ¢ " 2M[2u 1n;:}] L

0 -1 (rﬂ% 7 (r%\%ﬂ (rzg% 7 " | = * = \@f = 0 0
o B R e / ; Tl 0 a0 o

0 (rzg%ﬂ (:g%rz ! (ﬁ%’z)rz u=/(r/2M) —\ /22 0 ~1

Not
right away!

36

Gullstrand & Painlevé 1932
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Toy example: 1D Harmonic oscillator

(a) Manifest
Symmetry

(b) Hidden (c) Discovered Manifest
Symmetry Symmetry
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Measure symmetry violation

rotation

£ ~ |f(Rz) — Rf(z)|>, R
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Measure symmetry violation

2 - h
£~ 1fig) — @, g €G- Symmery
. Some Lie groupJ

d
g = exp( 2 0.K), K. are geneartors
i=1

d(f(gz) — gf(2)) |
do, 7=0

l

Theorem f(z) 1s G — equivariant <

s A

= math... = VA)Kz — K f(z)

j Linear PDE (operator)

‘. .
&if =0, L;f =

~
VA2)Kz — K f(2) )

-
C’ﬂ ~ |Lf]° = | VA2)Kiz — K.f(z) \é/

[ oss function
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Symmetries & PDEs

TABLE I: PDE and Losses for Generalized Symmetries

Generalized symmetry Linear operator L Loss /| Examples
Translation invariance L; =0, 01 AEF
Lie 1invariance IAJJ- = K;z-V VINV E.F
Lie equivariance lALj = K;z-V x K; (EQV B
T X t t
Canonical eqvariance éﬁ, ; Ilgj i g:: : llég gz N [I(('j lcAN C
Hamiltonicity lA—Jij = —m}0; + mgﬁi ‘u | A,B,C,D
Modularity iij — Awifﬁj | KM D
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Searching for manifest coordinates

O Trainable
O Fixed
2 : (
Tensor field Neural ;
with hidden

symmetry

Network

I'(z)

41



Open questions



1. Abduction

abstract concrete

Deduction (trivial)

AXIOMS . Phenomenology " Data

Abduction Induction

?
v
v v
. . . ' . ] . .
Discovery axioms: very hard! I?lscovery phenc?menology. eg. Discover instances: e.g.,
Equations, conservation laws, symmetries, design drugs

non-conservation, useful dofs,
dimensionless numbers ...



2. Interpretability

Humans .
ﬁ inform

Interpretability //Fx>4 &
Methods THENy =1 &5 ns
fr=t]  [fr=9f

ﬁ extract

Black Box
Model
ﬁ learn
/X XK/
/2 oo
Data 4 \7'4()

ﬁ capture

World
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a Game of GO

Game of GO
recorded in
the past

Game of GO
played and

learnined by
AlphaGo

AlphaGo Zero generated An entire Game of GO

possible moves out of an (Approximately 10170

entire state space state space complexity
and 107360 game tree
complexity)

3. Level of discovery

b Scientific Discovery

Discovered knowledge:
Current scientific —T T~
knowledge

N Knolwedge discoverable
\,(_,— with human-centric Al-
P Human hybrid system

Human discoverable knowledge:
Hypothesis space searchable
extending current scientific
knowledge

Knolwedge human may
not be able to discover
- The region for Al-driven
xploration

An entire hypothesis
space for scientific

knowledge is infinite
or undefinable (a boundary is not clear)

-

Search space structures for a perfect information games as represented by the Game of GO and b scientific discovery are illustrated with commonalities

and differences. While the search space for the Game of GO is well-defined, the search space for scientific discovery is open-ended. A practical initial

strategy is to augment search space based on current scientific knowledge with human-centric Al-Human Hybrid system. An extreme option is to set

search space broadly into distant hypothesis spaces where Al Scientist may discover knowledge that was unlikely to be discovered by the human scientist.
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How can we know?



