Ziming Liu

zmliu@mit.edu | website: kindxiaoming.github.io | +1 (617) 9499708

EXPERIENCE

Massachusetts Institute of Technology, USA

PhD student in physics, Research Assistant, IAIFI junior investigator

- Research in the intersection of artificial intelligence (AI) and physics (science), advised by Prof. Max Tegmark
- Physics of AI: Studied deep neural networks through the lens of physics. These works are published in top machine learning conferences (NeurIPS 2 orals, 1 poster; ICLR 1 spotlight) and covered by the Quanta magazine.
- Physics for AI: Designed Poisson Flow Generative Models and variants. These works are covered by MIT News and the Quanta Magazine, and are published in top machine learning conferences (NeurIPS 2, ICML 1).
- AI for physics: Built AI scientists that automate the discovery of physical laws. These works are covered by the New Scientist Magazine, and published in top physics journals: Physical Review Letters twice (both editors' suggestion), Physical Review E twice, and Entropy.
- Neuroscience for AI: Proposed Brain-inspired modular training for neural network interpretability, covered by Cognitive Revolution Podcast.
- Math for AI: Proposed Kolmogorov-Arnold Network, which has attracted enormous attention in the AI community since the preprint was released on April 30th, 2024.

Microsoft Research Asia, China

Research Assistant in machine learning theory group

• Augmenting Lagrangian neural networks for new physics detection, published in Physical Review E

Peking University, Beijing, China

Undergraduate student in physics, Research Assistant

Applying machine learning tools to analyze data from high-energy experiments, published in European physical Journal C and Physical Review C.

MEDIA COVERAGE

- Quanta Magazine, "The Physical Process That Powers a New Type of Generative AI"
- MIT News, "From physics to generative AI: An AI model for advanced pattern generation"
- Quanta Magazine, "How Do Machines 'Grok' Data?"
- New Scientist, "AI solves complex physics problems by looking for signs of symmetry"
- Nature Review Physics, "How machines could teach physicists new scientific concepts".
- Cognitive evolution Podcast, "Seeing is Believing with MIT's Ziming Liu"
- MarketTechPost, "Kolmogorov-Arnold Networks (KANs): A New Era of Interpretability and Accuracy in Deep Learning"
- Levelup Coding, "Kolmogorov-Arnold Networks (KANs) Might Change AI As We Know It, Forever"

SERVICE

Reviewing

Journals: Physical Review Research, IEEE Transactions on Neural Networks and Learning Systems

Feb 2021 - Present Cambridge, MA, USA

Sep 2016 – June 2020

Beijing, China

Sep 2020 - Feb 2021 Beijing, China

- Conferences: NeurIPS, ICLR, ICML
- Workshops: ML4Physics workshop, UniReps workshop, AI4Science workshop

Community Building

• Serve as an organizer for the AI4Science workshop at NeurIPS 2021, ICML 2022 and NeurIPS 2023.

REPRESENTATIVE PAPERS

• KAN: Kolmogorov-Arnold Networks. arXiv:2404.19756

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, Max Tegmark

• The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks, NeurIPS (Oral), 2023

Ziqian Zhong*, Ziming Liu*, Max Tegmark, Jacob Andreas

- Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability, Entropy, 2023 Ziming Liu, Eric Gan, Max Tegmark
- Growing Brains: Co-emergence of Anatomical and Functional Modularity in Recurrent Neural Networks, NeurIPS 2023 UniReps workshop

Ziming Liu, Mikail Khona, Ila R. Fiete, Max Tegmark

- Scientific discovery in the age of artificial intelligence, Nature, 2023 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, et al.
- Poisson flow generative models, NeurIPS, 2022 Yilun Xu*, Ziming Liu*, Max Tegmark, Tommi Jaakkola
- Towards understanding grokking: An effective theory of representation learning, NeurIPS (Oral), 2022 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, Mike Williams
- Machine learning hidden symmetries, Physical Review Letter (Editor's suggestion), 2022 Ziming Liu, Max Tegmark
- Machine learning conservation laws from trajectories, Physical Review Letter (Editor's Suggestion), 2021

Ziming Liu, Max Tegmark

FULL PUBLICATION LIST

• KAN: Kolmogorov-Arnold Networks. arXiv:2404.19756

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, Max Tegmark

- A Resource Model For Neural Scaling Law, ICLR 2024 BGPT workshop Jinyeop Song*, Ziming Liu*, Max Tegmark, Jeff Gore
- Do Diffusion Models Learn Semantically Meaningful and Efficient Representations?, ICLR 2024 BGPT workshop

Catherine Liang, Ziming Liu, Ila R. Fiete

• GenEFT: Understanding Statics and Dynamics of Model Generalization via Effective Theory, ICLR 2024 BGPT workshop

David Baek, Ziming Liu, Max Tegmark

 Growing Brains: Co-emergence of Anatomical and Functional Modularity in Recurrent Neural Networks, NeurIPS 2023 UniReps workshop

Ziming Liu, Mikail Khona, Ila R. Fiete, Max Tegmark

Grokking as Compression: A Nonlinear Complexity Perspective, NeurIPS 2023 UniReps workshop
 Ziming Liu, Ziqian Zhong, Max Tegmark

- A Neural Scaling Law from Lottery Ticket Ensembling, arXiv: 2310.02258, 2023 Ziming Liu, Max Tegmark
- Scientific discovery in the age of artificial intelligence, Nature, 2023 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, ...
- The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks, NeurIPS (Oral), 2023
 - Ziqian Zhong*, Ziming Liu*, Max Tegmark, Jacob Andreas
- Restart Sampling for Improving Generative Processes, NeurIPS, 2023 Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, Tommi Jaakkola
- Discovering New Interpretable Conservation Laws as Sparse Invariants, Physical Review E
 Ziming Liu, Patrick Obin Sturm, Saketh Bharadwaj, Sam Silva, Max Tegmark
- Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability, Entropy Ziming Liu, Eric Gan, Max Tegmark
- GenPhys: From Physical Processes to Generative Models, arXiv: 2304.02637, 2023 Ziming Liu, Di Luo, Yilun Xu, Tommi Jaakkola, Max Tegmark
- The quantization model of neural scaling, NeurIPS, 2023 Eric J Michaud, <u>Ziming Liu</u>, Uzay Girit, Max Tegmark
- **Pfgm++: Unlocking the potential of physics-inspired generative models, ICML, 2023** Yilun Xu, <u>Ziming Liu</u>, Yonglong Tian, Shangyuan Tong, Max Tegmark, Tommi Jaakkola
- Precision machine learning, Entropy, 2023 Eric J Michaud, Ziming Liu, Max Tegmark
- Poisson flow generative models, NeurIPS, 2022 Yilun Xu*, Ziming Liu*, Max Tegmark, Tommi Jaakkola
- Towards understanding grokking: An effective theory of representation learning, NeurIPS (Oral), 2022 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, Mike Williams
- Machine learning conservation laws from differential equations, Physical Review E, 2022 Ziming Liu, Varun Madhavan, Max Tegmark
- Omnigrok: Grokking beyond algorithmic data, ICLR (Spotlight), 2022 Ziming Liu, Eric J Michaud, Max Tegmark
- Second order ensemble Langevin method for sampling and inverse problems, arXiv: 2208.04506, 2022 Ziming Liu, Andrew M Stuart, Yixuan Wang
- Machine learning hidden symmetries, Physical Review Letter (Editor's suggestion), 2022 Ziming Liu, Max Tegmark
- Machine-learning nonconservative dynamics for new-physics detection, Physical Review E, 2021 Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, Tie-Yan Liu
- Physics-augmented learning: A new paradigm beyond physics-informed learning, NeurIPS 2021 AI4Science workshop, 2021

Ziming Liu, Yunyue Chen, Yuanqi Du, Max Tegmark

• Schrödinger principal-component analysis: On the duality between principal-component analysis and the Schrödinger equation, Physical Review E, 2021

Ziming Liu, Sitian Qian, Yixuan Wang, Yuxuan Yan, Tianyi Yang

- Applications of deep learning to relativistic hydrodynamics, Physical Review Research, 2021 Hengfeng Huang, Bowen Xiao, Ziming Liu, Zeming Wu, Yadong Mu, Huichao Song
- Machine learning conservation laws from trajectories, Physical Review Letter (Editor's Suggestion), 2021

Ziming Liu, Max Tegmark

• Robustness of principal component analysis of harmonic flow in heavy ion collisions, Physical Review C, 2020

Ziming Liu, Arabinda Behera, Huichao Song, Jiangyong Jia

- Quantum-inspired hamiltonian monte carlo for bayesian sampling, arXiv: 1912.01937, 2019 Ziming Liu, Zheng Zhang
- Principal component analysis of collective flow in relativistic heavy-ion collisions, European Physical Journal C, 2019

Ziming Liu, Wenbin Zhao, Huichao Song

SKILL

- Technical Skills: Python (PyTorch), Mathematica, C++
- Languages: Chinese (native), English (fluent)